81 research outputs found

    Development of vendor evaluation criteria and post-implementation considerations for MSFC center-wide executive information system

    Get PDF
    In June 1991, the MITRE Corporation submitted a series of recommendations as part of a Marshall Space Flight Center (MSFC) Management Information System Requirements Study, initiated by the Information Systems Office (ISO). A major recommendation of the study was to develop an Executive Information System (EIS) for MSFC executives. ISO was directed, by center management, to proceed with the development of a Center-Wide Executive Information System. Existing EIS prototypes, developed by the Space Shuttle Projects Office and the Payload Projects Office, were reviewed. These existing MSFC prototypes were considered not to encompass the required functionality needed on a center-wide basis. A follow-up study by MITRE provided top-level system requirements. These were later incorporated into a final requirements specification document by Boeing Computer Support Services

    Evaluation of computer-aided instruction techniques for the crew interface coordination position

    Get PDF
    The Crew Interface Coordinator (CIC) is responsible for real-time voice and procedural communication between the payload crew on the orbiter and the payload operations team on the ground. This function is dedicated to science activities and operations, and may also include some responsibilities for crew training. CIC training at Marshall Space Flight Center (MSFC) consists of mission-independent training, mission simulations, and line-organization training. As identified by Schneider, the program provides very good generic training; however position-specific training may be obtained in a very unstructured way. A computer-based training system, identified as Mac CIC, is currently under development to address this issue. Mac CIC is intended to provide an intermediate level of training in order to prepare the CIC for the more intensive mission simulations. Although originally intended as an intelligent tutoring system, Mac CIC currently exists as a hypertext-based application. The objectives of this research is to evaluate the current system and to provide both recommendations and a detailed plan for Mac CIC's evolution into an intelligent tutoring system

    Energy Efficiency in Manufacturing Facilities: Assessment, Analysis and Implementation

    Get PDF
    Manufacturing facilities are one among the largest consumers of energy. Efforts to improve energy efficiency are an increasing concern for many manufacturing facility engineering managers. This can be achieved by evaluating energy end uses (e.g., lighting, processing equipment, and heating, air conditioning, and ventilation (HVAC) systems), and by implementing measures to reduce the total amount of energy consumed for one or more of the end uses. Throughout the 40 years of its existence, the US Department of Energy’s Industrial Assessment Center program has developed an array of techniques to improve energy efficiency in industrial facilities. This chapter discusses recommended assessment procedures and observed energy-saving opportunities for some of the most common industrial energy systems. These systems include lighting, compressed air, boilers and steam systems, manufacturing process heating, HVAC, pumps, and fans. Implementation of these assessment recommendations has been demonstrated to increase efficiency and to thus reduce energy consumption and associated costs. While every manufacturing facility is different, and their component industrial energy systems equally unique, this chapter presents a set of analytical guidelines that can be used as a template by engineering practitioners to evaluate their facility energy use and implement subsequent energy conservation measures

    Fuzzy set theory for cumulative trauma prediction

    Get PDF
    A widely used fuzzy reasoning algorithm was modified and implemented via an expert system to assess the potential risk of employee repetitive strain injury in the workplace. This fuzzy relational model, known as the Priority First Cover Algorithm (PFC), was adapted to describe the relationship between 12 cumulative trauma disorders (CTDs) of the upper extremity, and 29 identified risk factors. The algorithm, which finds a suboptimal subset from a group of variables based on the criterion of priority, was adopted to enable the inference mechanism of a constructed knowledge-based system to predict CTD occurrence

    Integrated Hybrid System Architecture for Risk Analysis

    Get PDF
    A conceptual design has been announced of an expert-system computer program, and the development of a prototype of the program, intended for use as a project-management tool. The program integrates schedule and risk data for the purpose of determining the schedule applications of safety risks and, somewhat conversely, the effects of changes in schedules on changes on safety. It is noted that the design has been delivered to a NASA client and that it is planned to disclose the design in a conference presentation

    Fuzzy Multicriteria Decision-Making Model for Time-Cost-Risk Trade-Off Optimization in Construction Projects

    Get PDF
    As is often the case in project scheduling, when the project duration is shortened to decrease total cost, the total float is lost resulting in added critical or nearly critical activities. This, in turn, results in decreasing the probability of completing the project on time and increases the risk of schedule delays. To solve this problem, this research developed a fuzzy multicriteria decision-making (FMCDM) model. The objective of this model is to help project managers improve their decisions regarding time-cost-risk trade-offs (TCRTO) in construction projects. In this model, an optimization algorithm based on fuzzy logic and analytic hierarchy process (AHP) has been used to analyze the time-cost-risk trade-off alternatives and select the best one based on selected criteria. The algorithm was implemented in the MATLAB software and applied to two case studies to verify and validate the presented model. The presented FMCDM model could help produce a more reliable schedule and mitigate the risk of projects running overbudget or behind schedule. Further, this model is a powerful decision-making instrument to help managers reduce uncertainties and improve the accuracy of time-cost-risk trade-offs. The presented FMCDM model employed fuzzy linguistic terms, which provide decision-makers with the opportunity to give their judgments as intervals comparing to fixed value judgments. In conclusion, the presented FMCDM model has high robustness, and it is an attractive alternative to the traditional methods to solve the time-cost-risk trade-off problem in construction
    • …
    corecore